import { settings, createHistogram, setHistogramTitle, kNoZoom,
clTH2F, clTGraph2DErrors, clTGraph2DAsymmErrors, clTPaletteAxis, kNoStats } from '../core.mjs';
import { DrawOptions } from '../base/BasePainter.mjs';
import { ObjectPainter } from '../base/ObjectPainter.mjs';
import { TH2Painter } from './TH2Painter.mjs';
import { Triangles3DHandler } from '../hist2d/TH2Painter.mjs';
import { createLineSegments, PointsCreator, getMaterialArgs, THREE } from '../base/base3d.mjs';
import { convertLegoBuf, createLegoGeom } from './hist3d.mjs';
function getMax(arr) {
let v = arr[0];
for (let i = 1; i < arr.length; ++i)
v = Math.max(v, arr[i]);
return v;
}
function getMin(arr) {
let v = arr[0];
for (let i = 1; i < arr.length; ++i)
v = Math.min(v, arr[i]);
return v;
}
function TMath_Sort(np, values, indicies /* , down */) {
const arr = new Array(np);
for (let i = 0; i < np; ++i)
arr[i] = { v: values[i], i };
arr.sort((a, b) => { return a.v < b.v ? -1 : (a.v > b.v ? 1 : 0); });
for (let i = 0; i < np; ++i)
indicies[i] = arr[i].i;
}
class TGraphDelaunay {
constructor(g) {
this.fGraph2D = g;
this.fX = g.fX;
this.fY = g.fY;
this.fZ = g.fZ;
this.fNpoints = g.fNpoints;
this.fZout = 0.0;
this.fNdt = 0;
this.fNhull = 0;
this.fHullPoints = null;
this.fXN = null;
this.fYN = null;
this.fOrder = null;
this.fDist = null;
this.fPTried = null;
this.fNTried = null;
this.fMTried = null;
this.fInit = false;
this.fXNmin = 0.0;
this.fXNmax = 0.0;
this.fYNmin = 0.0;
this.fYNmax = 0.0;
this.fXoffset = 0.0;
this.fYoffset = 0.0;
this.fXScaleFactor = 0.0;
this.fYScaleFactor = 0.0;
this.SetMaxIter();
}
Initialize() {
if (!this.fInit) {
this.CreateTrianglesDataStructure();
this.FindHull();
this.fInit = true;
}
}
ComputeZ(x, y) {
// Initialize the Delaunay algorithm if needed.
// CreateTrianglesDataStructure computes fXoffset, fYoffset,
// fXScaleFactor and fYScaleFactor;
// needed in this function.
this.Initialize();
// Find the z value corresponding to the point (x,y).
const xx = (x+this.fXoffset)*this.fXScaleFactor,
yy = (y+this.fYoffset)*this.fYScaleFactor;
let zz = this.Interpolate(xx, yy);
// Wrong zeros may appear when points sit on a regular grid.
// The following line try to avoid this problem.
if (zz === 0) zz = this.Interpolate(xx+0.0001, yy);
return zz;
}
CreateTrianglesDataStructure() {
// Offset fX and fY so they average zero, and scale so the average
// of the X and Y ranges is one. The normalized version of fX and fY used
// in Interpolate.
const xmax = getMax(this.fGraph2D.fX),
ymax = getMax(this.fGraph2D.fY),
xmin = getMin(this.fGraph2D.fX),
ymin = getMin(this.fGraph2D.fY);
this.fXoffset = -(xmax+xmin)/2;
this.fYoffset = -(ymax+ymin)/2;
this.fXScaleFactor = 1/(xmax-xmin);
this.fYScaleFactor = 1/(ymax-ymin);
this.fXNmax = (xmax+this.fXoffset)*this.fXScaleFactor;
this.fXNmin = (xmin+this.fXoffset)*this.fXScaleFactor;
this.fYNmax = (ymax+this.fYoffset)*this.fYScaleFactor;
this.fYNmin = (ymin+this.fYoffset)*this.fYScaleFactor;
this.fXN = new Array(this.fNpoints+1);
this.fYN = new Array(this.fNpoints+1);
for (let n = 0; n < this.fNpoints; n++) {
this.fXN[n+1] = (this.fX[n]+this.fXoffset)*this.fXScaleFactor;
this.fYN[n+1] = (this.fY[n]+this.fYoffset)*this.fYScaleFactor;
}
// If needed, creates the arrays to hold the Delaunay triangles.
// A maximum number of 2*fNpoints is guessed. If more triangles will be
// find, FillIt will automatically enlarge these arrays.
this.fPTried = [];
this.fNTried = [];
this.fMTried = [];
}
// Is point e inside the triangle t1-t2-t3 ?
Enclose(t1, t2, t3, e) {
const x = [this.fXN[t1], this.fXN[t2], this.fXN[t3], this.fXN[t1]],
y = [this.fYN[t1], this.fYN[t2], this.fYN[t3], this.fYN[t1]],
xp = this.fXN[e],
yp = this.fYN[e];
let i = 0, j = x.length - 1, oddNodes = false;
for (; i < x.length; ++i) {
if ((y[i]<yp && y[j]>=yp) || (y[j]<yp && y[i]>=yp)) {
if (x[i]+(yp-y[i])/(y[j]-y[i])*(x[j]-x[i])<xp)
oddNodes = !oddNodes;
}
j = i;
}
return oddNodes;
}
// Files the triangle defined by the 3 vertices p, n and m into the
// fxTried arrays. If these arrays are to small they are automatically
// expanded.
FileIt(p, n, m) {
let swap, tmp, ps = p, ns = n, ms = m;
// order the vertices before storing them
do {
swap = false;
if (ns > ps) { tmp = ps; ps = ns; ns = tmp; swap = true; }
if (ms > ns) { tmp = ns; ns = ms; ms = tmp; swap = true; }
} while (swap);
// store a new Delaunay triangle
this.fNdt++;
this.fPTried.push(ps);
this.fNTried.push(ns);
this.fMTried.push(ms);
}
// Attempt to find all the Delaunay triangles of the point set. It is not
// guaranteed that it will fully succeed, and no check is made that it has
// fully succeeded (such a check would be possible by referencing the points
// that make up the convex hull). The method is to check if each triangle
// shares all three of its sides with other triangles. If not, a point is
// generated just outside the triangle on the side(s) not shared, and a new
// triangle is found for that point. If this method is not working properly
// (many triangles are not being found) it's probably because the new points
// are too far beyond or too close to the non-shared sides. Fiddling with
// the size of the `alittlebit' parameter may help.
FindAllTriangles() {
if (this.fAllTri) return;
this.fAllTri = true;
let xcntr, ycntr, xm, ym, xx, yy,
sx, sy, nx, ny, mx, my, mdotn, nn, a,
t1, t2, pa, na, ma, pb, nb, mb, p1=0, p2=0, m, n, p3=0;
const s = [false, false, false],
alittlebit = 0.0001;
this.Initialize();
// start with a point that is guaranteed to be inside the hull (the
// centre of the hull). The starting point is shifted "a little bit"
// otherwise, in case of triangles aligned on a regular grid, we may
// found none of them.
xcntr = 0;
ycntr = 0;
for (n = 1; n <= this.fNhull; n++) {
xcntr += this.fXN[this.fHullPoints[n-1]];
ycntr += this.fYN[this.fHullPoints[n-1]];
}
xcntr = xcntr/this.fNhull+alittlebit;
ycntr = ycntr/this.fNhull+alittlebit;
// and calculate it's triangle
this.Interpolate(xcntr, ycntr);
// loop over all Delaunay triangles (including those constantly being
// produced within the loop) and check to see if their 3 sides also
// correspond to the sides of other Delaunay triangles, i.e. that they
// have all their neighbors.
t1 = 1;
while (t1 <= this.fNdt) {
// get the three points that make up this triangle
pa = this.fPTried[t1-1];
na = this.fNTried[t1-1];
ma = this.fMTried[t1-1];
// produce three integers which will represent the three sides
s[0] = false;
s[1] = false;
s[2] = false;
// loop over all other Delaunay triangles
for (t2=1; t2<=this.fNdt; t2++) {
if (t2 !== t1) {
// get the points that make up this triangle
pb = this.fPTried[t2-1];
nb = this.fNTried[t2-1];
mb = this.fMTried[t2-1];
// do triangles t1 and t2 share a side?
if ((pa === pb && na === nb) || (pa === pb && na === mb) || (pa === nb && na === mb)) {
// they share side 1
s[0] = true;
} else if ((pa === pb && ma === nb) || (pa === pb && ma === mb) || (pa === nb && ma === mb)) {
// they share side 2
s[1] = true;
} else if ((na === pb && ma === nb) || (na === pb && ma === mb) || (na === nb && ma === mb)) {
// they share side 3
s[2] = true;
}
}
// if t1 shares all its sides with other Delaunay triangles then
// forget about it
if (s[0] && s[1] && s[2]) continue;
}
// Looks like t1 is missing a neighbor on at least one side.
// For each side, take a point a little bit beyond it and calculate
// the Delaunay triangle for that point, this should be the triangle
// which shares the side.
for (m=1; m<=3; m++) {
if (!s[m-1]) {
// get the two points that make up this side
if (m === 1) {
p1 = pa;
p2 = na;
p3 = ma;
} else if (m === 2) {
p1 = pa;
p2 = ma;
p3 = na;
} else if (m === 3) {
p1 = na;
p2 = ma;
p3 = pa;
}
// get the coordinates of the centre of this side
xm = (this.fXN[p1]+this.fXN[p2])/2.0;
ym = (this.fYN[p1]+this.fYN[p2])/2.0;
// we want to add a little to these coordinates to get a point just
// outside the triangle; (sx,sy) will be the vector that represents
// the side
sx = this.fXN[p1]-this.fXN[p2];
sy = this.fYN[p1]-this.fYN[p2];
// (nx,ny) will be the normal to the side, but don't know if it's
// pointing in or out yet
nx = sy;
ny = -sx;
nn = Math.sqrt(nx*nx+ny*ny);
nx = nx/nn;
ny = ny/nn;
mx = this.fXN[p3]-xm;
my = this.fYN[p3]-ym;
mdotn = mx*nx+my*ny;
if (mdotn > 0) {
// (nx,ny) is pointing in, we want it pointing out
nx = -nx;
ny = -ny;
}
// increase/decrease xm and ym a little to produce a point
// just outside the triangle (ensuring that the amount added will
// be large enough such that it won't be lost in rounding errors)
a = Math.abs(Math.max(alittlebit*xm, alittlebit*ym));
xx = xm+nx*a;
yy = ym+ny*a;
// try and find a new Delaunay triangle for this point
this.Interpolate(xx, yy);
// this side of t1 should now, hopefully, if it's not part of the
// hull, be shared with a new Delaunay triangle just calculated by Interpolate
}
}
t1++;
}
}
// Finds those points which make up the convex hull of the set. If the xy
// plane were a sheet of wood, and the points were nails hammered into it
// at the respective coordinates, then if an elastic band were stretched
// over all the nails it would form the shape of the convex hull. Those
// nails in contact with it are the points that make up the hull.
FindHull() {
if (!this.fHullPoints)
this.fHullPoints = new Array(this.fNpoints);
let nhull_tmp = 0;
for (let n=1; n<=this.fNpoints; n++) {
// if the point is not inside the hull of the set of all points
// bar it, then it is part of the hull of the set of all points
// including it
const is_in = this.InHull(n, n);
if (!is_in) {
// cannot increment fNhull directly - InHull needs to know that
// the hull has not yet been completely found
nhull_tmp++;
this.fHullPoints[nhull_tmp-1] = n;
}
}
this.fNhull = nhull_tmp;
}
// Is point e inside the hull defined by all points apart from x ?
InHull(e, x) {
let n1, n2, n, m, ntry,
lastdphi, dd1, dd2, dx1, dx2, dx3, dy1, dy2, dy3,
u, v, vNv1, vNv2, phi1, phi2, dphi,
deTinhull = false;
const xx = this.fXN[e],
yy = this.fYN[e];
if (this.fNhull > 0) {
// The hull has been found - no need to use any points other than
// those that make up the hull
ntry = this.fNhull;
} else {
// The hull has not yet been found, will have to try every point
ntry = this.fNpoints;
}
// n1 and n2 will represent the two points most separated by angle
// from point e. Initially the angle between them will be <180 degrees.
// But subsequent points will increase the n1-e-n2 angle. If it
// increases above 180 degrees then point e must be surrounded by
// points - it is not part of the hull.
n1 = 1;
n2 = 2;
if (n1 === x) {
n1 = n2;
n2++;
} else if (n2 === x)
n2++;
// Get the angle n1-e-n2 and set it to lastdphi
dx1 = xx-this.fXN[n1];
dy1 = yy-this.fYN[n1];
dx2 = xx-this.fXN[n2];
dy2 = yy-this.fYN[n2];
phi1 = Math.atan2(dy1, dx1);
phi2 = Math.atan2(dy2, dx2);
dphi = (phi1-phi2)-(Math.floor((phi1-phi2)/(Math.PI*2))*Math.PI*2);
if (dphi < 0) dphi += Math.PI*2;
lastdphi = dphi;
for (n=1; n<=ntry; n++) {
if (this.fNhull > 0) {
// Try hull point n
m = this.fHullPoints[n-1];
} else
m = n;
if ((m !== n1) && (m !== n2) && (m !== x)) {
// Can the vector e->m be represented as a sum with positive
// coefficients of vectors e->n1 and e->n2?
dx1 = xx-this.fXN[n1];
dy1 = yy-this.fYN[n1];
dx2 = xx-this.fXN[n2];
dy2 = yy-this.fYN[n2];
dx3 = xx-this.fXN[m];
dy3 = yy-this.fYN[m];
dd1 = (dx2*dy1-dx1*dy2);
dd2 = (dx1*dy2-dx2*dy1);
if (dd1*dd2 !== 0) {
u = (dx2*dy3-dx3*dy2)/dd1;
v = (dx1*dy3-dx3*dy1)/dd2;
if ((u < 0) || (v < 0)) {
// No, it cannot - point m does not lie in-between n1 and n2 as
// viewed from e. Replace either n1 or n2 to increase the
// n1-e-n2 angle. The one to replace is the one which makes the
// smallest angle with e->m
vNv1 = (dx1*dx3+dy1*dy3)/Math.sqrt(dx1*dx1+dy1*dy1);
vNv2 = (dx2*dx3+dy2*dy3)/Math.sqrt(dx2*dx2+dy2*dy2);
if (vNv1 > vNv2) {
n1 = m;
phi1 = Math.atan2(dy3, dx3);
phi2 = Math.atan2(dy2, dx2);
} else {
n2 = m;
phi1 = Math.atan2(dy1, dx1);
phi2 = Math.atan2(dy3, dx3);
}
dphi = (phi1-phi2)-(Math.floor((phi1-phi2)/(Math.PI*2))*Math.PI*2);
if (dphi < 0) dphi += Math.PI*2;
if ((dphi - Math.PI)*(lastdphi - Math.PI) < 0) {
// The addition of point m means the angle n1-e-n2 has risen
// above 180 degrees, the point is in the hull.
deTinhull = true;
return deTinhull;
}
lastdphi = dphi;
}
}
}
}
// Point e is not surrounded by points - it is not in the hull.
return deTinhull;
}
// Finds the z-value at point e given that it lies
// on the plane defined by t1,t2,t3
InterpolateOnPlane(TI1, TI2, TI3, e) {
let tmp, swap, t1 = TI1, t2 = TI2, t3 = TI3;
// order the vertices
do {
swap = false;
if (t2 > t1) { tmp = t1; t1 = t2; t2 = tmp; swap = true; }
if (t3 > t2) { tmp = t2; t2 = t3; t3 = tmp; swap = true; }
} while (swap);
const x1 = this.fXN[t1],
x2 = this.fXN[t2],
x3 = this.fXN[t3],
y1 = this.fYN[t1],
y2 = this.fYN[t2],
y3 = this.fYN[t3],
f1 = this.fZ[t1-1],
f2 = this.fZ[t2-1],
f3 = this.fZ[t3-1],
u = (f1*(y2-y3)+f2*(y3-y1)+f3*(y1-y2))/(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2)),
v = (f1*(x2-x3)+f2*(x3-x1)+f3*(x1-x2))/(y1*(x2-x3)+y2*(x3-x1)+y3*(x1-x2)),
w = f1-u*x1-v*y1;
return u*this.fXN[e] + v*this.fYN[e] + w;
}
// Finds the Delaunay triangle that the point (xi,yi) sits in (if any) and
// calculate a z-value for it by linearly interpolating the z-values that
// make up that triangle.
Interpolate(xx, yy) {
let thevalue,
it, ntris_tried, p, n, m,
i, j, k, l, z, f, d, o1, o2, a, b, t1, t2, t3,
ndegen = 0, degen = 0, fdegen = 0, o1degen = 0, o2degen = 0,
vxN, vyN,
d1, d2, d3, c1, c2, dko1, dko2, dfo1,
dfo2, sin_sum, cfo1k, co2o1k, co2o1f,
dx1, dx2, dx3, dy1, dy2, dy3, u, v;
const dxz = [0, 0, 0], dyz = [0, 0, 0];
// initialize the Delaunay algorithm if needed
this.Initialize();
// create vectors needed for sorting
if (!this.fOrder) {
this.fOrder = new Array(this.fNpoints);
this.fDist = new Array(this.fNpoints);
}
// the input point will be point zero.
this.fXN[0] = xx;
this.fYN[0] = yy;
// set the output value to the default value for now
thevalue = this.fZout;
// some counting
ntris_tried = 0;
// no point in proceeding if xx or yy are silly
if ((xx > this.fXNmax) || (xx < this.fXNmin) || (yy > this.fYNmax) || (yy < this.fYNmin))
return thevalue;
// check existing Delaunay triangles for a good one
for (it=1; it<=this.fNdt; it++) {
p = this.fPTried[it-1];
n = this.fNTried[it-1];
m = this.fMTried[it-1];
// p, n and m form a previously found Delaunay triangle, does it
// enclose the point?
if (this.Enclose(p, n, m, 0)) {
// yes, we have the triangle
thevalue = this.InterpolateOnPlane(p, n, m, 0);
return thevalue;
}
}
// is this point inside the convex hull?
const shouldbein = this.InHull(0, -1);
if (!shouldbein)
return thevalue;
// it must be in a Delaunay triangle - find it...
// order mass points by distance in mass plane from desired point
for (it=1; it<=this.fNpoints; it++) {
vxN = this.fXN[it];
vyN = this.fYN[it];
this.fDist[it-1] = Math.sqrt((xx-vxN)*(xx-vxN)+(yy-vyN)*(yy-vyN));
}
// sort array 'fDist' to find closest points
TMath_Sort(this.fNpoints, this.fDist, this.fOrder /* , false */);
for (it=0; it<this.fNpoints; it++) this.fOrder[it]++;
// loop over triplets of close points to try to find a triangle that
// encloses the point.
for (k=3; k<=this.fNpoints; k++) {
m = this.fOrder[k-1];
for (j=2; j<=k-1; j++) {
n = this.fOrder[j-1];
for (i=1; i<=j-1; i++) {
let skip_this_triangle = false; // used instead of goto L90
p = this.fOrder[i-1];
if (ntris_tried > this.fMaxIter) {
// perhaps this point isn't in the hull after all
/* Warning("Interpolate",
"Abandoning the effort to find a Delaunay triangle (and thus interpolated z-value) for point %g %g"
,xx,yy); */
return thevalue;
}
ntris_tried++;
// check the points aren't colinear
d1 = Math.sqrt((this.fXN[p]-this.fXN[n])**2+(this.fYN[p]-this.fYN[n])**2);
d2 = Math.sqrt((this.fXN[p]-this.fXN[m])**2+(this.fYN[p]-this.fYN[m])**2);
d3 = Math.sqrt((this.fXN[n]-this.fXN[m])**2+(this.fYN[n]-this.fYN[m])**2);
if ((d1+d2 <= d3) || (d1+d3 <= d2) || (d2+d3 <= d1))
continue;
// does the triangle enclose the point?
if (!this.Enclose(p, n, m, 0))
continue;
// is it a Delaunay triangle? (ie. are there any other points
// inside the circle that is defined by its vertices?)
// test the triangle for Delaunay'ness
// loop over all other points testing each to see if it's
// inside the triangle's circle
ndegen = 0;
for (z = 1; z <= this.fNpoints; z++) {
if ((z === p) || (z === n) || (z === m))
continue; // goto L50;
// An easy first check is to see if point z is inside the triangle
// (if it's in the triangle it's also in the circle)
// point z cannot be inside the triangle if it's further from (xx,yy)
// than the furthest pointing making up the triangle - test this
for (l=1; l<=this.fNpoints; l++) {
if (this.fOrder[l-1] === z) {
if ((l<i) || (l<j) || (l<k)) {
// point z is nearer to (xx,yy) than m, n or p - it could be in the
// triangle so call enclose to find out
// if it is inside the triangle this can't be a Delaunay triangle
if (this.Enclose(p, n, m, z)) { skip_this_triangle = true; break; } // goto L90;
} else {
// there's no way it could be in the triangle so there's no point
// calling enclose
break; // goto L1;
}
}
}
if (skip_this_triangle) break;
// is point z colinear with any pair of the triangle points?
// L1:
if (((this.fXN[p]-this.fXN[z])*(this.fYN[p]-this.fYN[n])) === ((this.fYN[p]-this.fYN[z])*(this.fXN[p]-this.fXN[n]))) {
// z is colinear with p and n
a = p;
b = n;
} else if (((this.fXN[p]-this.fXN[z])*(this.fYN[p]-this.fYN[m])) === ((this.fYN[p]-this.fYN[z])*(this.fXN[p]-this.fXN[m]))) {
// z is colinear with p and m
a = p;
b = m;
} else if (((this.fXN[n]-this.fXN[z])*(this.fYN[n]-this.fYN[m])) === ((this.fYN[n]-this.fYN[z])*(this.fXN[n]-this.fXN[m]))) {
// z is colinear with n and m
a = n;
b = m;
} else {
a = 0;
b = 0;
}
if (a !== 0) {
// point z is colinear with 2 of the triangle points, if it lies
// between them it's in the circle otherwise it's outside
if (this.fXN[a] !== this.fXN[b]) {
if (((this.fXN[z]-this.fXN[a])*(this.fXN[z]-this.fXN[b])) < 0) {
skip_this_triangle = true;
break;
// goto L90;
} else if (((this.fXN[z]-this.fXN[a])*(this.fXN[z]-this.fXN[b])) === 0) {
// At least two points are sitting on top of each other, we will
// treat these as one and not consider this a 'multiple points lying
// on a common circle' situation. It is a sign something could be
// wrong though, especially if the two coincident points have
// different fZ's. If they don't then this is harmless.
console.warn(`Interpolate Two of these three points are coincident ${a} ${b} ${z}`);
}
} else {
if (((this.fYN[z]-this.fYN[a])*(this.fYN[z]-this.fYN[b])) < 0) {
skip_this_triangle = true;
break;
// goto L90;
} else if (((this.fYN[z]-this.fYN[a])*(this.fYN[z]-this.fYN[b])) === 0) {
// At least two points are sitting on top of each other - see above.
console.warn(`Interpolate Two of these three points are coincident ${a} ${b} ${z}`);
}
}
// point is outside the circle, move to next point
continue; // goto L50;
}
if (skip_this_triangle) break;
/* Error("Interpolate", "Should not get to here"); */
// may as well soldier on
// SL: initialize before try to find better values
f = m;
o1 = p;
o2 = n;
// if point z were to look at the triangle, which point would it see
// lying between the other two? (we're going to form a quadrilateral
// from the points, and then demand certain properties of that
// quadrilateral)
dxz[0] = this.fXN[p]-this.fXN[z];
dyz[0] = this.fYN[p]-this.fYN[z];
dxz[1] = this.fXN[n]-this.fXN[z];
dyz[1] = this.fYN[n]-this.fYN[z];
dxz[2] = this.fXN[m]-this.fXN[z];
dyz[2] = this.fYN[m]-this.fYN[z];
for (l=1; l<=3; l++) {
dx1 = dxz[l-1];
dx2 = dxz[l%3];
dx3 = dxz[(l+1)%3];
dy1 = dyz[l-1];
dy2 = dyz[l%3];
dy3 = dyz[(l+1)%3];
// u et v are used only to know their sign. The previous
// code computed them with a division which was long and
// might be a division by 0. It is now replaced by a
// multiplication.
u = (dy3*dx2-dx3*dy2)*(dy1*dx2-dx1*dy2);
v = (dy3*dx1-dx3*dy1)*(dy2*dx1-dx2*dy1);
if ((u >= 0) && (v >= 0)) {
// vector (dx3,dy3) is expressible as a sum of the other two vectors
// with positive coefficients -> i.e. it lies between the other two vectors
if (l === 1) {
f = m; o1 = p; o2 = n;
} else if (l === 2) {
f = p; o1 = n; o2 = m;
} else {
f = n; o1 = m; o2 = p;
}
break; // goto L2;
}
}
// L2:
// this is not a valid quadrilateral if the diagonals don't cross,
// check that points f and z lie on opposite side of the line o1-o2,
// this is true if the angle f-o1-z is greater than o2-o1-z and o2-o1-f
cfo1k = ((this.fXN[f]-this.fXN[o1])*(this.fXN[z]-this.fXN[o1])+(this.fYN[f]-this.fYN[o1])*(this.fYN[z]-this.fYN[o1]))/
Math.sqrt(((this.fXN[f]-this.fXN[o1])*(this.fXN[f]-this.fXN[o1])+(this.fYN[f]-this.fYN[o1])*(this.fYN[f]-this.fYN[o1]))*
((this.fXN[z]-this.fXN[o1])*(this.fXN[z]-this.fXN[o1])+(this.fYN[z]-this.fYN[o1])*(this.fYN[z]-this.fYN[o1])));
co2o1k = ((this.fXN[o2]-this.fXN[o1])*(this.fXN[z]-this.fXN[o1])+(this.fYN[o2]-this.fYN[o1])*(this.fYN[z]-this.fYN[o1]))/
Math.sqrt(((this.fXN[o2]-this.fXN[o1])*(this.fXN[o2]-this.fXN[o1])+(this.fYN[o2]-this.fYN[o1])*(this.fYN[o2]-this.fYN[o1]))*
((this.fXN[z]-this.fXN[o1])*(this.fXN[z]-this.fXN[o1]) + (this.fYN[z]-this.fYN[o1])*(this.fYN[z]-this.fYN[o1])));
co2o1f = ((this.fXN[o2]-this.fXN[o1])*(this.fXN[f]-this.fXN[o1])+(this.fYN[o2]-this.fYN[o1])*(this.fYN[f]-this.fYN[o1]))/
Math.sqrt(((this.fXN[o2]-this.fXN[o1])*(this.fXN[o2]-this.fXN[o1])+(this.fYN[o2]-this.fYN[o1])*(this.fYN[o2]-this.fYN[o1]))*
((this.fXN[f]-this.fXN[o1])*(this.fXN[f]-this.fXN[o1]) + (this.fYN[f]-this.fYN[o1])*(this.fYN[f]-this.fYN[o1])));
if ((cfo1k > co2o1k) || (cfo1k > co2o1f)) {
// not a valid quadrilateral - point z is definitely outside the circle
continue; // goto L50;
}
// calculate the 2 internal angles of the quadrangle formed by joining
// points z and f to points o1 and o2, at z and f. If they sum to less
// than 180 degrees then z lies outside the circle
dko1 = Math.sqrt((this.fXN[z]-this.fXN[o1])*(this.fXN[z]-this.fXN[o1])+(this.fYN[z]-this.fYN[o1])*(this.fYN[z]-this.fYN[o1]));
dko2 = Math.sqrt((this.fXN[z]-this.fXN[o2])*(this.fXN[z]-this.fXN[o2])+(this.fYN[z]-this.fYN[o2])*(this.fYN[z]-this.fYN[o2]));
dfo1 = Math.sqrt((this.fXN[f]-this.fXN[o1])*(this.fXN[f]-this.fXN[o1])+(this.fYN[f]-this.fYN[o1])*(this.fYN[f]-this.fYN[o1]));
dfo2 = Math.sqrt((this.fXN[f]-this.fXN[o2])*(this.fXN[f]-this.fXN[o2])+(this.fYN[f]-this.fYN[o2])*(this.fYN[f]-this.fYN[o2]));
c1 = ((this.fXN[z]-this.fXN[o1])*(this.fXN[z]-this.fXN[o2])+(this.fYN[z]-this.fYN[o1])*(this.fYN[z]-this.fYN[o2]))/dko1/dko2;
c2 = ((this.fXN[f]-this.fXN[o1])*(this.fXN[f]-this.fXN[o2])+(this.fYN[f]-this.fYN[o1])*(this.fYN[f]-this.fYN[o2]))/dfo1/dfo2;
sin_sum = c1*Math.sqrt(1-c2*c2)+c2*Math.sqrt(1-c1*c1);
// sin_sum doesn't always come out as zero when it should do.
if (sin_sum < -1.e-6) {
// z is inside the circle, this is not a Delaunay triangle
skip_this_triangle = true;
break;
// goto L90;
} else if (Math.abs(sin_sum) <= 1.e-6) {
// point z lies on the circumference of the circle (within rounding errors)
// defined by the triangle, so there is potential for degeneracy in the
// triangle set (Delaunay triangulation does not give a unique way to split
// a polygon whose points lie on a circle into constituent triangles). Make
// a note of the additional point number.
ndegen++;
degen = z;
fdegen = f;
o1degen = o1;
o2degen = o2;
}
// L50: continue;
} // end of for ( z = 1 ...) loop
if (skip_this_triangle) continue;
// This is a good triangle
if (ndegen > 0) {
// but is degenerate with at least one other,
// haven't figured out what to do if more than 4 points are involved
/* if (ndegen > 1) {
Error("Interpolate",
"More than 4 points lying on a circle. No decision making process formulated for triangulating this region in a non-arbitrary way %d %d %d %d",
p,n,m,degen);
return thevalue;
} */
// we have a quadrilateral which can be split down either diagonal
// (d<->f or o1<->o2) to form valid Delaunay triangles. Choose diagonal
// with highest average z-value. Whichever we choose we will have
// verified two triangles as good and two as bad, only note the good ones
d = degen;
f = fdegen;
o1 = o1degen;
o2 = o2degen;
if ((this.fZ[o1-1] + this.fZ[o2-1]) > (this.fZ[d-1] + this.fZ[f-1])) {
// best diagonalisation of quadrilateral is current one, we have
// the triangle
t1 = p;
t2 = n;
t3 = m;
// file the good triangles
this.FileIt(p, n, m);
this.FileIt(d, o1, o2);
} else {
// use other diagonal to split quadrilateral, use triangle formed by
// point f, the degnerate point d and whichever of o1 and o2 create
// an enclosing triangle
t1 = f;
t2 = d;
if (this.Enclose(f, d, o1, 0))
t3 = o1;
else
t3 = o2;
// file the good triangles
this.FileIt(f, d, o1);
this.FileIt(f, d, o2);
}
} else {
// this is a Delaunay triangle, file it
this.FileIt(p, n, m);
t1 = p;
t2 = n;
t3 = m;
}
// do the interpolation
thevalue = this.InterpolateOnPlane(t1, t2, t3, 0);
return thevalue;
// L90: continue;
}
}
}
if (shouldbein)
console.error(`Interpolate Point outside hull when expected inside: this point could be dodgy ${xx} ${yy} ${ntris_tried}`);
return thevalue;
}
// Defines the number of triangles tested for a Delaunay triangle
// (number of iterations) before abandoning the search
SetMaxIter(n = 100000) {
this.fAllTri = false;
this.fMaxIter = n;
}
// Sets the histogram bin height for points lying outside the convex hull ie:
// the bins in the margin.
SetMarginBinsContent(z) {
this.fZout = z;
}
} // class TGraphDelaunay
/** @summary Function handles tooltips in the mesh */
function graph2DTooltip(intersect) {
let indx = Math.floor(intersect.index / this.nvertex);
if ((indx < 0) || (indx >= this.index.length)) return null;
const sqr = v => v*v;
indx = this.index[indx];
const fp = this.fp, gr = this.graph;
let grx = fp.grx(gr.fX[indx]),
gry = fp.gry(gr.fY[indx]),
grz = fp.grz(gr.fZ[indx]);
if (this.check_next && indx+1<gr.fX.length) {
const d = intersect.point,
grx1 = fp.grx(gr.fX[indx+1]),
gry1 = fp.gry(gr.fY[indx+1]),
grz1 = fp.grz(gr.fZ[indx+1]);
if (sqr(d.x-grx1)+sqr(d.y-gry1)+sqr(d.z-grz1) < sqr(d.x-grx)+sqr(d.y-gry)+sqr(d.z-grz)) {
grx = grx1; gry = gry1; grz = grz1; indx++;
}
}
return {
x1: grx - this.scale0,
x2: grx + this.scale0,
y1: gry - this.scale0,
y2: gry + this.scale0,
z1: grz - this.scale0,
z2: grz + this.scale0,
color: this.tip_color,
lines: [this.tip_name,
'pnt: ' + indx,
'x: ' + fp.axisAsText('x', gr.fX[indx]),
'y: ' + fp.axisAsText('y', gr.fY[indx]),
'z: ' + fp.axisAsText('z', gr.fZ[indx])
]
};
}
/**
* @summary Painter for TGraph2D classes
* @private
*/
class TGraph2DPainter extends ObjectPainter {
/** @summary Decode options string */
decodeOptions(opt, _gr) {
const d = new DrawOptions(opt);
if (!this.options)
this.options = {};
const res = this.options, gr2d = this.getObject();
if (d.check('FILL_', 'color') && gr2d)
gr2d.fFillColor = d.color;
if (d.check('LINE_', 'color') && gr2d)
gr2d.fLineColor = d.color;
d.check('SAME');
if (d.check('TRI1'))
res.Triangles = 11; // wire-frame and colors
else if (d.check('TRI2'))
res.Triangles = 10; // only color triangles
else if (d.check('TRIW'))
res.Triangles = 1;
else if (d.check('TRI'))
res.Triangles = 2;
else
res.Triangles = 0;
res.Line = d.check('LINE');
res.Error = d.check('ERR') && (this.matchObjectType(clTGraph2DErrors) || this.matchObjectType(clTGraph2DAsymmErrors));
if (d.check('P0COL'))
res.Color = res.Circles = res.Markers = true;
else {
res.Color = d.check('COL');
res.Circles = d.check('P0');
res.Markers = d.check('P');
}
if (!res.Markers) res.Color = false;
if (res.Color || res.Triangles >= 10)
res.Zscale = d.check('Z');
res.isAny = function() {
return this.Markers || this.Error || this.Circles || this.Line || this.Triangles;
};
if (res.isAny()) {
res.Axis = 'lego2';
if (res.Zscale) res.Axis += 'z';
} else
res.Axis = opt;
this.storeDrawOpt(opt);
}
/** @summary Create histogram for axes drawing */
createHistogram() {
const gr = this.getObject(),
asymm = this.matchObjectType(clTGraph2DAsymmErrors);
let xmin = gr.fX[0], xmax = xmin,
ymin = gr.fY[0], ymax = ymin,
zmin = gr.fZ[0], zmax = zmin;
for (let p = 0; p < gr.fNpoints; ++p) {
const x = gr.fX[p], y = gr.fY[p], z = gr.fZ[p];
if (this.options.Error) {
xmin = Math.min(xmin, x - (asymm ? gr.fEXlow[p] : gr.fEX[p]));
xmax = Math.max(xmax, x + (asymm ? gr.fEXhigh[p] : gr.fEX[p]));
ymin = Math.min(ymin, y - (asymm ? gr.fEYlow[p] : gr.fEY[p]));
ymax = Math.max(ymax, y + (asymm ? gr.fEYhigh[p] : gr.fEY[p]));
zmin = Math.min(zmin, z - (asymm ? gr.fEZlow[p] : gr.fEZ[p]));
zmax = Math.max(zmax, z + (asymm ? gr.fEZhigh[p] : gr.fEZ[p]));
} else {
xmin = Math.min(xmin, x);
xmax = Math.max(xmax, x);
ymin = Math.min(ymin, y);
ymax = Math.max(ymax, y);
zmin = Math.min(zmin, z);
zmax = Math.max(zmax, z);
}
}
function calc_delta(min, max, margin) {
if (min < max) return margin * (max - min);
return Math.abs(min) < 1e5 ? 0.02 : 0.02 * Math.abs(min);
}
const dx = calc_delta(xmin, xmax, gr.fMargin),
dy = calc_delta(ymin, ymax, gr.fMargin),
dz = calc_delta(zmin, zmax, 0);
let uxmin = xmin - dx, uxmax = xmax + dx,
uymin = ymin - dy, uymax = ymax + dy,
uzmin = zmin - dz, uzmax = zmax + dz;
if ((uxmin < 0) && (xmin >= 0)) uxmin = xmin*0.98;
if ((uxmax > 0) && (xmax <= 0)) uxmax = 0;
if ((uymin < 0) && (ymin >= 0)) uymin = ymin*0.98;
if ((uymax > 0) && (ymax <= 0)) uymax = 0;
if ((uzmin < 0) && (zmin >= 0)) uzmin = zmin*0.98;
if ((uzmax > 0) && (zmax <= 0)) uzmax = 0;
const graph = this.getObject();
if (graph.fMinimum !== kNoZoom) uzmin = graph.fMinimum;
if (graph.fMaximum !== kNoZoom) uzmax = graph.fMaximum;
this._own_histogram = true; // when histogram created on client side
const histo = createHistogram(clTH2F, graph.fNpx, graph.fNpy);
histo.fName = graph.fName + '_h';
setHistogramTitle(histo, graph.fTitle);
histo.fXaxis.fXmin = uxmin;
histo.fXaxis.fXmax = uxmax;
histo.fYaxis.fXmin = uymin;
histo.fYaxis.fXmax = uymax;
histo.fZaxis.fXmin = uzmin;
histo.fZaxis.fXmax = uzmax;
histo.fMinimum = uzmin;
histo.fMaximum = uzmax;
histo.fBits |= kNoStats;
if (!this.options.isAny()) {
const dulaunay = this.buildDelaunay(graph);
if (dulaunay) {
for (let i = 0; i < graph.fNpx; ++i) {
const xx = uxmin + (i + 0.5) / graph.fNpx * (uxmax - uxmin);
for (let j = 0; j < graph.fNpy; ++j) {
const yy = uymin + (j + 0.5) / graph.fNpy * (uymax - uymin),
zz = dulaunay.ComputeZ(xx, yy);
histo.fArray[histo.getBin(i+1, j+1)] = zz;
}
}
}
}
return histo;
}
buildDelaunay(graph) {
if (!this._delaunay) {
this._delaunay = new TGraphDelaunay(graph);
this._delaunay.FindAllTriangles();
if (!this._delaunay.fNdt)
delete this._delaunay;
}
return this._delaunay;
}
drawTriangles(fp, graph, levels, palette) {
const dulaunay = this.buildDelaunay(graph);
if (!dulaunay) return;
const main_grz = !fp.logz ? fp.grz : value => (value < fp.scale_zmin) ? -0.1 : fp.grz(value),
plain_mode = this.options.Triangles === 2,
do_faces = (this.options.Triangles >= 10) || plain_mode,
do_lines = (this.options.Triangles % 10 === 1) || (plain_mode && (graph.fLineColor !== graph.fFillColor)),
triangles = new Triangles3DHandler(levels, main_grz, 0, 2*fp.size_z3d, do_lines);
for (triangles.loop = 0; triangles.loop < 2; ++triangles.loop) {
triangles.createBuffers();
for (let t = 0; t < dulaunay.fNdt; ++t) {
const points = [dulaunay.fPTried[t], dulaunay.fNTried[t], dulaunay.fMTried[t]],
coord = [];
let use_triangle = true;
for (let i = 0; i < 3; ++i) {
const pnt = points[i] - 1;
coord.push(fp.grx(graph.fX[pnt]), fp.gry(graph.fY[pnt]), main_grz(graph.fZ[pnt]));
if ((graph.fX[pnt] < fp.scale_xmin) || (graph.fX[pnt] > fp.scale_xmax) ||
(graph.fY[pnt] < fp.scale_ymin) || (graph.fY[pnt] > fp.scale_ymax))
use_triangle = false;
}
if (do_faces && use_triangle)
triangles.addMainTriangle(...coord);
if (do_lines && use_triangle) {
triangles.addLineSegment(coord[0], coord[1], coord[2], coord[3], coord[4], coord[5]);
triangles.addLineSegment(coord[3], coord[4], coord[5], coord[6], coord[7], coord[8]);
triangles.addLineSegment(coord[6], coord[7], coord[8], coord[0], coord[1], coord[2]);
}
}
}
triangles.callFuncs((lvl, pos) => {
const geometry = createLegoGeom(this.getMainPainter(), pos, null, 100, 100),
color = plain_mode ? this.getColor(graph.fFillColor) : palette.calcColor(lvl, levels.length),
material = new THREE.MeshBasicMaterial(getMaterialArgs(color, { side: THREE.DoubleSide, vertexColors: false })),
mesh = new THREE.Mesh(geometry, material);
fp.add3DMesh(mesh, this);
mesh.painter = this; // to let use it with context menu
}, (_isgrid, lpos) => {
const lcolor = this.getColor(graph.fLineColor),
material = new THREE.LineBasicMaterial({ color: new THREE.Color(lcolor), linewidth: graph.fLineWidth }),
linemesh = createLineSegments(convertLegoBuf(this.getMainPainter(), lpos, 100, 100), material);
fp.add3DMesh(linemesh, this);
});
}
/** @summary Update TGraph2D object */
updateObject(obj, opt) {
if (!this.matchObjectType(obj)) return false;
if (opt && (opt !== this.options.original))
this.decodeOptions(opt, obj);
Object.assign(this.getObject(), obj);
delete this._delaunay; // rebuild triangles
delete this.$redraw_hist;
// if our own histogram was used as axis drawing, we need update histogram as well
if (this.axes_draw) {
const hist_painter = this.getMainPainter();
hist_painter?.updateObject(this.createHistogram(), this.options.Axis);
this.$redraw_hist = hist_painter;
}
return true;
}
/** @summary Redraw TGraph2D object
* @desc Update histogram drawing if necessary
* @return {Promise} for drawing ready */
async redraw() {
let promise = Promise.resolve(true);
if (this.$redraw_hist) {
promise = this.$redraw_hist.redraw();
delete this.$redraw_hist;
}
return promise.then(() => this.drawGraph2D());
}
/** @summary Actual drawing of TGraph2D object
* @return {Promise} for drawing ready */
async drawGraph2D() {
const main = this.getMainPainter(),
fp = this.getFramePainter(),
graph = this.getObject();
if (!graph || !main || !fp || !fp.mode3d)
return this;
fp.remove3DMeshes(this);
if (!this.options.isAny()) {
// no need to draw smoothing if histogram content was drawn
if (main.draw_content)
return this;
if ((graph.fMarkerSize === 1) && (graph.fMarkerStyle === 1))
this.options.Circles = true;
else
this.options.Markers = true;
}
const countSelected = (zmin, zmax) => {
let cnt = 0;
for (let i = 0; i < graph.fNpoints; ++i) {
if ((graph.fX[i] < fp.scale_xmin) || (graph.fX[i] > fp.scale_xmax) ||
(graph.fY[i] < fp.scale_ymin) || (graph.fY[i] > fp.scale_ymax) ||
(graph.fZ[i] < zmin) || (graph.fZ[i] >= zmax)) continue;
++cnt;
}
return cnt;
};
// try to define scale-down factor
let step = 1;
if ((settings.OptimizeDraw > 0) && !fp.webgl) {
const numselected = countSelected(fp.scale_zmin, fp.scale_zmax),
sizelimit = 50000;
if (numselected > sizelimit) {
step = Math.floor(numselected / sizelimit);
if (step <= 2) step = 2;
}
}
const markeratt = this.createAttMarker({ attr: graph, std: false }),
promises = [];
let palette = null,
levels = [fp.scale_zmin, fp.scale_zmax],
scale = fp.size_x3d / 100 * markeratt.getFullSize();
if (this.options.Circles)
scale = 0.06 * fp.size_x3d;
if (fp.usesvg) scale *= 0.3;
scale *= 7 * Math.max(fp.size_x3d / fp.getFrameWidth(), fp.size_z3d / fp.getFrameHeight());
if (this.options.Color || (this.options.Triangles >= 10)) {
levels = main.getContourLevels(true);
palette = main.getHistPalette();
}
if (this.options.Triangles)
this.drawTriangles(fp, graph, levels, palette);
for (let lvl = 0; lvl < levels.length-1; ++lvl) {
const lvl_zmin = Math.max(levels[lvl], fp.scale_zmin),
lvl_zmax = Math.min(levels[lvl+1], fp.scale_zmax);
if (lvl_zmin >= lvl_zmax) continue;
const size = Math.floor(countSelected(lvl_zmin, lvl_zmax) / step),
index = new Int32Array(size);
let pnts = null, select = 0, icnt = 0,
err = null, asymm = false, line = null, ierr = 0, iline = 0;
if (this.options.Markers || this.options.Circles)
pnts = new PointsCreator(size, fp.webgl, scale/3);
if (this.options.Error) {
err = new Float32Array(size*6*3);
asymm = this.matchObjectType(clTGraph2DAsymmErrors);
}
if (this.options.Line)
line = new Float32Array((size-1)*6);
for (let i = 0; i < graph.fNpoints; ++i) {
if ((graph.fX[i] < fp.scale_xmin) || (graph.fX[i] > fp.scale_xmax) ||
(graph.fY[i] < fp.scale_ymin) || (graph.fY[i] > fp.scale_ymax) ||
(graph.fZ[i] < lvl_zmin) || (graph.fZ[i] >= lvl_zmax)) continue;
if (step > 1) {
select = (select+1) % step;
if (select !== 0) continue;
}
index[icnt++] = i; // remember point index for tooltip
const x = fp.grx(graph.fX[i]),
y = fp.gry(graph.fY[i]),
z = fp.grz(graph.fZ[i]);
if (pnts) pnts.addPoint(x, y, z);
if (err) {
err[ierr] = fp.grx(graph.fX[i] - (asymm ? graph.fEXlow[i] : graph.fEX[i]));
err[ierr+1] = y;
err[ierr+2] = z;
err[ierr+3] = fp.grx(graph.fX[i] + (asymm ? graph.fEXhigh[i] : graph.fEX[i]));
err[ierr+4] = y;
err[ierr+5] = z;
ierr+=6;
err[ierr] = x;
err[ierr+1] = fp.gry(graph.fY[i] - (asymm ? graph.fEYlow[i] : graph.fEY[i]));
err[ierr+2] = z;
err[ierr+3] = x;
err[ierr+4] = fp.gry(graph.fY[i] + (asymm ? graph.fEYhigh[i] : graph.fEY[i]));
err[ierr+5] = z;
ierr+=6;
err[ierr] = x;
err[ierr+1] = y;
err[ierr+2] = fp.grz(graph.fZ[i] - (asymm ? graph.fEZlow[i] : graph.fEZ[i]));
err[ierr+3] = x;
err[ierr+4] = y;
err[ierr+5] = fp.grz(graph.fZ[i] + (asymm ? graph.fEZhigh[i] : graph.fEZ[i]));
ierr+=6;
}
if (line) {
if (iline>=6) {
line[iline] = line[iline-3];
line[iline+1] = line[iline-2];
line[iline+2] = line[iline-1];
iline+=3;
}
line[iline] = x;
line[iline+1] = y;
line[iline+2] = z;
iline+=3;
}
}
if (line && (iline > 3) && (line.length === iline)) {
const lcolor = this.getColor(graph.fLineColor),
material = new THREE.LineBasicMaterial({ color: new THREE.Color(lcolor), linewidth: graph.fLineWidth }),
linemesh = createLineSegments(line, material);
fp.add3DMesh(linemesh, this);
linemesh.graph = graph;
linemesh.index = index;
linemesh.fp = fp;
linemesh.scale0 = 0.7*scale;
linemesh.tip_name = this.getObjectHint();
linemesh.tip_color = (graph.fMarkerColor === 3) ? 0xFF0000 : 0x00FF00;
linemesh.nvertex = 2;
linemesh.check_next = true;
linemesh.tooltip = graph2DTooltip;
}
if (err) {
const lcolor = this.getColor(graph.fLineColor),
material = new THREE.LineBasicMaterial({ color: new THREE.Color(lcolor), linewidth: graph.fLineWidth }),
errmesh = createLineSegments(err, material);
fp.add3DMesh(errmesh, this);
errmesh.graph = graph;
errmesh.index = index;
errmesh.fp = fp;
errmesh.scale0 = 0.7*scale;
errmesh.tip_name = this.getObjectHint();
errmesh.tip_color = (graph.fMarkerColor === 3) ? 0xFF0000 : 0x00FF00;
errmesh.nvertex = 6;
errmesh.tooltip = graph2DTooltip;
}
if (pnts) {
let color = 'blue';
if (!this.options.Circles || this.options.Color)
color = palette?.calcColor(lvl, levels.length) ?? this.getColor(graph.fMarkerColor);
const pr = pnts.createPoints({ color, style: this.options.Circles ? 4 : graph.fMarkerStyle }).then(mesh => {
mesh.graph = graph;
mesh.fp = fp;
mesh.tip_color = (graph.fMarkerColor === 3) ? 0xFF0000 : 0x00FF00;
mesh.scale0 = 0.3*scale;
mesh.index = index;
mesh.tip_name = this.getObjectHint();
mesh.tooltip = graph2DTooltip;
fp.add3DMesh(mesh, this);
});
promises.push(pr);
}
}
return Promise.all(promises).then(() => {
const main = this.getMainPainter(),
handle_palette = this.axes_draw || (main?.draw_content === false);
if (!handle_palette)
return;
const pal = main?.findFunction(clTPaletteAxis),
pal_painter = this.getPadPainter()?.findPainterFor(pal);
if (!pal_painter)
return;
pal_painter.Enabled = this.options.Zscale;
if (this.options.Zscale)
return pal_painter.drawPave();
else
pal_painter.removeG(); // completely remove drawing without need to redraw complete pad
}).then(() => {
fp.render3D(100);
return this;
});
}
/** @summary draw TGraph2D object */
static async draw(dom, gr, opt) {
const painter = new TGraph2DPainter(dom, gr);
painter.decodeOptions(opt, gr);
let promise = Promise.resolve(null);
if (!painter.getMainPainter()) {
// histogram is not preserved in TGraph2D
promise = TH2Painter.draw(dom, painter.createHistogram(), painter.options.Axis);
painter.axes_draw = true;
}
return promise.then(() => {
painter.addToPadPrimitives();
return painter.drawGraph2D();
});
}
} // class TGraph2DPainter
export { TGraph2DPainter };